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Abstract. We present a system for deriving inclusions between graphs
from a set of inclusions between graphs taken as hypotheses. The novel
features are the extended notion of graph with an explicitly represen-
tation of complement, the more involved definition of the system, and
its completeness proof due to the embedding of complements. This is
an improvement on former work, where complement was introduced by
definition. Our calculus provides a basis on which one can construct a
wide range of graph calculi for several algebras of relations.
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1 Introduction

Our understanding of basic reasoning with diagrams can be better grasped by
observing Figure 1 (a). In this paper, we show how the basic idea underlying
reasoning with diagrams can be nicely adapted to the case of “formulas” being
“terms from a relation algebraic language” and “implies” meaning “the relation
defined by term t1 is a sub-relation of the one defined by term t2, under a set Σ
of hypotheses”. In this case, certainly due to the conceptual proximity between
binary relations and graphs, the diagrams that appear as the most appropriate to
deal with are the 2-pointed labeled directed graphs [1], and the picture in Figure 1
(a) converts to that in Figure 1 (b).

Graphs in the sense above mentioned have been used or, rather, have been
proposed to be used as a tool in the investigation of relation algebraic formalisms
from a long time ago. Usually, the graphs in general — not only those obtained
from terms — have bigger expressive and proof powers and are reputed to be
easier to use than the algebraic terms. Hence, by using graphs instead of terms,
one can obtain results on graphs that remain true when restricted to the terms.
Examples of this strategy in use and some of its developments can be found in
the papers [1,6,4,7,5]. One can say that all these works, except [6], use graphs as
auxiliary tools into the investigation of subsystems of relation algebras [15,20].

A.K. Goel, M. Jamnik, and N.H. Narayanan (Eds.): Diagrams 2010, LNAI 6170, pp. 84–98, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Calculus for Graphs with Complement 85

F1 |= F2

��
��

��������� ���������

�
�
�
�
�

�
�
�
�
�

� � � � � � � � �� � � � � � � � �

�
�
�
�
�

�
�
�
�
�

DF1 =⇒ DF2

�� ��

formulas

diagrams

(a)

t1 ≤ t2

��
��

��������� ���������

�
�
�
�
�

�
�
�
�
�

� � � � � � � � �� � � � � � � � �

�
�
�
�
�

�
�
�
�
�

Gt1
Σ

=⇒ Gt2

�� ��

terms

graphs

(b)

Fig. 1. Reasoning (a) with diagrams and (b) with graphs

Differently, Curtis and Lowe [6] suggest to investigate graph systems themselves
as ordinary formal systems. Their main idea is to use the 2-pointed labeled
directed graphs machinery as a formal system whose language has graphs as
formulas and whose inference rules are applied to transform a graph into another.
Under some general conditions, these transformation rules can be used to put
the graphs into a certain normal form and the inclusions of graphs in normal
form can be tested via an adequate notion of homomorphism between graphs.
They also give hints of how to adapt their ideas to deal with a whole class
of algebras built on the top of a lattice equipped with an associative binary
operation compatible with the lattice operations.

We decided to investigate Curtis and Lowe ideas deeply and to develop log-
ical systems having graphs as terms and inferences on graphs. In the previous
papers [10,9,12,13] we investigate the use of graphs to decide the validities of lan-
guages representing just positive information. The next natural step was taken
in [11] where we considered reasoning from hypotheses in a language where com-
plementation is introduced by definition.

Here we present a system which improves the earlier ones on reasoning from
hypotheses, having an explicit representation of complement. The basic intu-
itions are quite simple, leading to a playful and powerful system for deriving
inclusions between graphs that are consequences of a set of inclusions between
graphs taken as hypotheses. The novel features are the extended notion of graph
with arcs labeled by boxes (to represent complement), the more involved defi-
nition of the system, and its completeness proof due to the embedding of com-
plements. We leave for further investigation the use of our system to simplify
previous reasoning about algebras of relations as well as to adapt our system to
deal with algebras having a structured domain (cf. [11,12] for preliminary results
in this direction).

The approach to reasoning with graphs we adopt here may be called the
logic systematic approach: pictures are considered as ordinary terms of a (non-
orthodox) logical system and a set of inference rules is provided for deriving
pictures from pictures. This approach emphasizes notions of homomorphism for
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pictures, which are used to prove the inclusions and equalities. With no intention
of being exhaustive, we would like to mention two other approaches in using
pictures as a tool to help investigating and applying relational formalisms. The
approach based on the theory of allegories [2,3,16] views pictures as arrows
in a (unitary pretabular) allegory [8] and uses laws directly associated to the
valid allegorical identities for transforming pictures. Results of the theory of
allegories are used to show that two pictures can be proved equal by using the
laws on pictures iff they represent the same relation. The approach based on the
rewriting systems [17,18,19] endows pictures with a relational semantics, which
allows them to be interpreted as terms of an algebraic language. A rewriting
mechanism for pictures is built as a variant of the algebraic approach to graph
rewriting. The way one can use rewriting sequences as proofs leads to a general
and flexible tool for the proof of relational algebraic identities.

The structure of this paper is as follows. In Section 2, we present some intuitive
ideas and examples to motivate the graph language and rules discussed in the
other sections. In Section 3, we introduce more precisely our graphs, presenting
its syntax and semantics, and defining the notion of consequence we deal with.
We also present two schemes of axioms and two rules which can be used to
transform a graph into another and prove soundness of the system. In Section 4,
we indicate how one can characterize graph consequence by means of the axioms
and rules, obtaining completeness of the calculus. Due to lack of space some
minor details in the proofs were omitted.

2 Basic Ideas

We begin with some intuitive ideas behind our graph calculus, describing the
aspect our 2-pointed labeled directed graphs have, how they can be used to
represent relations, and how they can be transformed to represent inferences on
relations. A graph is a finite set of slices. A slice consists of nodes, labeled arcs
between nodes, and exactly two distinguished nodes we call input and output
and represented by − and +, respectively. A label is a relation symbol or a box.
A box is a figure of the form G , where G is a graph. A box should be considered
as a black-box, that means, the nodes, arcs, labels, and distinguished nodes of
the graph it encloses do not count as nodes, arcs, labels, or distinguished nodes
of the graph in which it occurs as a label. We identify a graph {S}, consisting
of just one slice S, with the slice S.

S1

− +
s ��

S2

− +
t ��

S3

− +��
− +

t ��

S4

•− r�� +��
− +

t ��

Fig. 2. Slices
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Figure 2 shows slices S1, S2, S3, and S4. Slices S1 and S2 have single arcs,
labeled by the relation symbols s and t, respectively. Slice S3 has a single arc
labeled by the box S2 . Slice S4 has two consecutive opposite arcs, one labeled

by the relation symbol r and the other labeled by the box S2 .
Figure 3 shows a single graph consisting of two slices, S5 and S6. Slice S5 has

two parallel paths from the non-distinguished node • to node the output +. One

is the path • r→ − s→ + and the other is the arc •
S2

−−−→ +. Slice S6 is like S5,

with arc −
S1

−−−→ + in place of arc − s→ +.

− +
t ��

−

+•
r

��

��

s

���������������

− +
t ��

−

+•
r

��

����������������� − +
s ��

Fig. 3. Graph with two alternative slices S5 and S6, obtained from S4

Now, we describe the way graphs, slices, and labels represent binary relations.
Given an arbitrary set M , a relation symbol represents an arbitrary binary

relation on M . So, considering that the relation symbols r, s and t, referred
above, represent binary relations on a base set M , the slices and graph depicted in
Figures 2 and 3 also represent binary relations on M , according to the following
ideas.

A labeled arc from a node u to a node v with label L represents a restriction
imposed to u and v, namely that u and v should be related by the relation L. A
slice represents the set of pairs satisfying the restrictions imposed to its input-
output nodes. Thus, S1 represents the set of pairs related by s, i.e. the relation
s. Analogously, S2 represents relation t.

A box represents the complement of the relation the graph it encloses repre-
sents. Hence, since S3 represents the set of pairs related by S2 , we have that
S3 represents the relation tC, the complement of t.

Consecutive arcs represent a concatenation of the restrictions each arc imposes
on their input and output nodes, i.e. the “serialization” of the restrictions. Slice
S4 represents the set of pairs having an intermediate point • with which the
input node is related by r and that is related to the output node by S2 . Hence,
S4 represents the relation rT ◦ tC, the conposition of the transpose of r with the
complement of t.

Parallel paths sharing the same extreme points represent simultaneous re-
strictions their extreme points should satisfy, i.e. the “parallelization” of the
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restrictions. So, S5 represents the set of pairs related by both the relations rT◦tC
and s, i.e. S5 represents the intersection (rT ◦ tC) ∩ s. Similarly, S6 represents
the intersection (rT ◦ tC) ∩ sC.

In general, a slice imposes a set of restrictions on its input and output nodes
that any pair of points in M should satisfy to be in the relation the slice
represents.

Finally, a graph represents the relation which is the union of the relations
represented by its slices. Thus, the graph in Figure 3 represents the union {(rT ◦
tC) ∩ s} ∪ {(rT ◦ tC) ∩ sC}.

Now, we describe, by way of an example, how our graphs can be manipulated
to represent inferences on relations. The ideas here presented give the intuitions
behind our graph calculus and will lead us to a set of inference rules which will
characterize it.

It is known that, for all relations r, s and t, the inclusion rT ◦ tC ⊆ sC follows
from the inclusion r ◦ s ⊆ t. Figure 4 is a proof of this fact in our graph calculus.
It consists of a sequence 〈G1, G2, G3, G4, G5〉 of five graphs.

The graph G1 is the single slice graph S4 of Figure 2, that represents the
relation rT ◦ tC, i.e. G1 represents the left-hand side of the inclusion we want to
prove.

The graph G2 is the two slices graph {S5, S6} of Figure 3, obtained from
graph G1 by expanding slice S4. Notice that slice S5 and slice S6 are obtained
from slice S4 by adding to it a new arc from x4 to y4, labeled by s and the box
S1 , respectively. To show that this passage from S4 to {S5, S6} is justified, we

consider that, in general, a graph represents alternatives a pair of points may
satisfy in order to belong to the relation defined by the graph. Also, as usual,
any pair of points is related by a given relation or by its complement. Thus, slice
S4 and the graph {S5, S6} impose the same restrictions to any pair of nodes,
representing the same relation.

The graph G3 is also a two slices graph, {S7, S6}, obtained this time from
the graph {S5, S6}, according to the following idea that allow us to use the
hypothesis r ◦ s ⊆ t to transform the slice S5. Since slice S5 has a path from
node • to the output node + through the input node − that represents the
relation r◦s and since, by hypothesis, r◦s ⊆ t, we are allowed to transform slice
S5 into slice S7 by adding an arc labeled t from node • to the output node +.

Now, observe that slice S7 of graph G3 has two parallel arcs linking node •
to the output node +, one labeled t and the other labeled S2 . So, according
to our conventions on parallel paths, the points • and + are simultaneously in
the relations t and tC, so that slice S7 represents the empty relation. Thus, we
can erase slice S7 from the graph G3 obtaining the single slice graph G4 which
consists of the remaining slice S6.

Finally, note that, inside graph G4 we can locate a copy of the slice S8, as
shown in Figure 5. This means that S8 imposes no more restrictions than S6 in
defining a relation and so, S6 may be considered to represent a sub-relation of
S8. Thus, we finally move from graph G4 to graph G5 in constructing our graph
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G1 :

S4

•− r�� +��
− +

t ��

⇓ HypE⊆ES1

G2 :

S5

− +
t ��

−

+•
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S6

− +
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−

+•
r
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G3 :

S7

− +
t ��

−

+•
r

��
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��
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s
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S6

− +
t ��

−

+•
r

��

����������������� − +
s ��

⇓ HypOS2⊆O

G4 :

S6

− +
t ��

−

+•
r

��

����������������� − +
s ��

⇓ Cv

G5 :

S8

− +��
− +

s ��

Fig. 4. Graph proof of r ◦ s ⊆ t � rT ◦ tC ⊆ sC
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− +
t ��

−

+•
r

��

• ����������������� − +
s ��

−

+��������������� − +
s ��

��

��

G4

G5

Fig. 5. Mapping slice S8 to slice S6

proof. The latter consists of a boxed slice which represents the relation sC, i.e.
G5 represents the right-hand side of the implication we want to prove.

Summarizing, we have ilustrated above how graphs can be used to prove a
valid inference involving two relational inclusions, the latter having occurrences
of complement. The usual setting where formal reasoning on relations is per-
formed is equational logic. There, all the statements are equalities between re-
lational terms, and the only primitive inference rule is the high-school rule of
replacing equals by equals. To emphasize the playful aspect of our approach, we
present below an equational proof of the above inference, based on the usual
equational axioms for relations.

Proposition 1. r ◦ s ⊆ t implies rT ◦ tC ⊆ sC, for all relations r, s, and t.

Proof. We use the equational reasoning (Con), which assures that = is a con-
gruence relation with respect to the operations on relations; we apply some usual
Boolean properties (BA), the distributivity of ◦ on ∪ (Dis), and the awckward
axiom (rT ◦ (r ◦ s)C) ∪ sC = sC (Ax), which plays an important role in the ax-
iomatization of relation algebras [20].

1. (r ◦ s) ∩ t = r ◦ s (Hyp)
2. ((r ◦ s) ∩ t)C = (r ◦ s)C (1, Con)
3. (r ◦ s)C ∪ tC = (r ◦ s)C (2, BA)
4. rT ◦ ((r ◦ s)C ∪ tC) = rT ◦ (r ◦ s)C (3, Con)
5. (rT ◦ (r ◦ s)C) ∪ (rT ◦ tC) = rT ◦ (r ◦ s)C (4, Dis)
6. ((rT ◦ (r ◦ s)C) ∪ (rT ◦ tC)) ∪ sC = (rT ◦ (r ◦ s)C) ∪ sC (5, Con)
7. ((rT ◦ (r ◦ s)C) ∪ sC) ∪ (rT ◦ tC) = (rT ◦ (r ◦ s)C) ∪ sC (6, BA)
8. sC ∪ (rT ◦ tC) = sC (7, Ax)

In the proof above we used the fact that, for relations, any inclusion r ⊆ s is
equivalent to the equalities r ∩ s = s and s ∪ r = r.

3 Graph Calculus

Now we formalize the intuitive ideas presented in Section 2 to define our graph
calculus.
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We start by presenting syntax. Our system has sets of 2-pointed labeled di-
rected graphs as “terms” and inclusions between graphs as “formulas”.

Nodes and labeled arcs are the building blocks of graphs. Hence, we first
consider the sets Inod of individual nodes and Rsym of relational symbols, which
we will keep fixed throughout.

A slice, typically denoted by S or T , is a structure (N, A, x, y), where N is a
finite nonempty set of nodes; A ⊆ N × L × N is a finite set of labeled arcs (L
is the set of all labels); x (input) and y (output) are, not necessarily distinct,
distinguished nodes in N . An arc of A is a triple, denoted by uLv, with u, v ∈ N

and L being a label. A label is a relational symbol or a box G , where G is a
concrete graph.

Concrete graphs are sets of slices defined by the following grammar.

G ::= {SL} | E | I | O | GT | G ◦G | G 
G | G �G,

where

SL = ({x, y}, {xLy}, x, y), with x, y ∈ Inod and L being a label,
E = {({x, y}, ∅, x, y)}, with x, y ∈ Inod and x = y,
I = {({x}, ∅, x, x)}, with x ∈ Inod,
O = ∅.

The operations on concrete graphs are defined based on their analogous to slices,
except for union. Given slices S = (N, A, x, y), S1 = (N1, A1, x1, y1), and S2 =
(N2, A2, x2, y2), we define

ST = (N, A, y, x), the transposition of S,
S1 ◦ S2 = (N1 �N2, A1 �A2, x1, y2)x2

y1
, the composition of S1 and S2,

S1 
 S2 = (N1 �N2, A1 �A2, x1, y1)x1
x2

y1
y2

, the intersection of S1 and S2.

Here, we use the node substitution notation u
v for replacing u by v, which we

extend naturally to sets as well as to tuples, e.g., for a set A of arcs, we put
Au

v = {wu
v Lz u

v : wLz ∈ A}.
Given concrete graphs G = {Si : i ∈ I} and H = {Tj : j ∈ J}, we define

GT = {Si
T : i ∈ I}, the transposition of G,

G ◦H = {Si ◦ Tj : i ∈ I, j ∈ J}, the composition of G and H ,
G 
H = {Si 
 Tj : i ∈ I, j ∈ J}, the intersection of G and H ,
G �H = G ∪H , the union of G and H .

Slices S1 = (N1, A1, x1, y1) and S2 = (N2, A2, x2, y2) are isomorphic if there are
bijections f : N1 → N2 and g : A1 → A2 such that

1. for all urv ∈ A1, g(urv) = furfv,
2. for all u G v ∈ A1, g(u G v) = fu G′ fv and G and G′ are isomorphic,
3. fx1 = x2 and fy1 = y2.
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Concrete graphs G and H are isomorphic if there is a bijection h : G → H
such that h(S) is isomorphic to S, for all S ∈ G. The usual identification of
isomorphic concrete graphs is reflected in our figures by the representation of
every non-distinguished node by •, of every input node by −, and of every output
node by +.

A graph is an equivalence class of isomorphic concrete graphs. In what fol-
lows, a graph is identified with each of the concrete graphs that represents the
equivalence class.

A graph inclusion is an expression of the form G � H .
We now move on to semantics. Given a base set M , the labels, slices, and

graphs will denote binary relations on M . To define this in a proper way we
need the notions of a model and an assignment of individual nodes.

A model, typically denoted by M, is a structure 〈M, {rM : r ∈ Rsym}〉, where
M = ∅ is the universe of M and rM ⊆ M × M , for every r ∈ Rsym. The
meaning of a label L in a model M, denoted by [[L]]M, is defined by [[r]]M = rM

and
[[

G
]]

M
= [[G]]CM, the complement of

[[
G

]]
M

. The meaning of a graph G in

a model M, denoted by [[G]]M, is defined in Table 1, where R−1 is the transpose
of relation R, i.e. R−1 = {(a, b) ∈ M × M : (b, a) ∈ R}, and R1 | R2 is the
composition of relations R1 and R2, i.e R1 | R2 = {(a, b) ∈ M ×M : (a, c) ∈
R1 and (c, b) ∈ R2, for some c ∈M}.

Table 1. Meaning of graphs

[[{SL}]]M = [[L]]M [[GT]]M = [[G]]M
−1

[[E]]M = M ×M [[G ◦H ]]M = [[G]]M | [[H ]]
[[O]]M = ∅ [[G 	H ]]M = [[G]]M ∩ [[H ]]
[[I ]]M = {(a, b) ∈M ×M : a = b} [[G �H ]]M = [[G]]M ∪ [[H ]]

As usual, we introduce a notion of consequence between a set of graph inclu-
sions and a graph inclusion based on meaning. We say that a model M verifies a
graph inclusion G � H , denoted by M |= G � H , iff [[G]]M ⊆ [[H ]]M. We say that
a graph inclusion is valid, denoted by |= G � H , iff it is verified by any model.
We say that a model M verifies a set Γ of graph inclusions, denoted by M |= Γ ,
iff M verifies every graph inclusion in Γ . We say that a graph inclusion G � H
is a consequence of a set Γ of graph inclusions, denoted by Γ |= G � H , iff
M |= G � H whenever M |= Γ , for every model M. As usual, we have |= G � H
iff ∅ |= G � H .

Now we present a set of valid inclusions and a set of rules to transform a
graph into another. These rules will preserve meaning when applied to graphs.

We first introduce two families of valid inclusions. These will play the role
of axioms in our graph calculus. Recall O = ∅, the empty graph, and E =
{({x, y}, ∅, x, y)}, the graph consisting of one arcless slice with two distinct nodes,
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input x and output y. Given a slice S = (NS , AS , xS , yS), we define two graphs
as follows. The graph OS = {(NS, AS ∪ {xS S yS}, xS , yS)} is obtained from S

by adding to it a new arc from the input of S to the output of S labeled by S .
The graph ES = {S, ({x, y}, {x S y}, x, y)} is obtained from S by adjoining to
S a new slice with two distinct nodes, input x and output y, and a single arc
x S y (Figure 6).

− S
+

S

��OS :

− S
+ − +

S
��ES :

Fig. 6. Graphs OS and ES

We shall take as schemes of axioms of the graph calculus the inclusions OS � O
and E � ES for any every S (Table 2). It follows immediately from the definitions
that these inclusions are valid.

Table 2. Axioms

OS � O and E � ES

Lemma 1. M |= {OS � O, E � ES}, for every model M and every slice S.

The rules of our graph calculus are Graph Cover rule, Hypothesis rule and Box
rule. Graph Cover rule is used to compare graphs with respect to inclusion,
Hypothesis rule, to transform graphs according to the set of inclusions taken as
hypotheses, and Box rule, to simplify the inner structure of box labels.

To define our first transformation rule, the concepts of homomorphism from
a slice to another and that of a graph covering another will be crucial. Given
slices S = (NS , AS , xS , yS) and T = (NT , AT , xT , yT ), by a slice homomor-
phism from T to S we mean a function φ : NT → NS , denoted by φ : T → S,
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that preserves input, output, and arcs, i.e. φxT = xS , φyT = yS , and if uLv ∈ AT

then φuLφv ∈ AS . Given graphs G and H , we say that H covers G or G is
covered by H , denoted by G ← H , iff for each slice S ∈ G there exist a slice
T ∈ H and a slice homomorphism φ : T → S.

Rule Cv (Table 3) allows us to replace a graph by another one that covers it.
The next result, showing that covering preserves meaning, i.e. that rule Cv is
sound, follows from the fact that a slice homomorphism transfers assignments
by composition.

Table 3. Graph Cover rule

Cv
G

H
if G← H

Lemma 2. If G← H, then [[G]]M ⊆ [[H ]]M, for every model M.

We now introduce the concepts of gluing slices and draft homomorphism between
slices, which will be central in applying a graph inclusion to transform a graph
into another.

Intuitively, we glue slice T onto slice S by adding to S a copy of T and
identifying designated nodes u, v of S to the input and output of T . More
precisely, given slices S = (NS , AS , xS , yS) and T = (NT , AT , xT , yT ), as well
as designated nodes u, v ∈ NS , the result of gluing T onto S via u, v is the
slice defined by glue (u,v)(T, S) = (NS � NT , AS � AT , xS , yS)xT

u
yT

v . We glue
a graph H onto a slice S, via nodes u, v of S, by gluing its slices to S, i.e.
glue (u,v)(H, S) = {glue (u,v)(T, S) : T ∈ H} (Figure 7).

H

=⇒

glue u,v(H,S1)

�
�
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�
�
�
�
�

������
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�
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�
�
�
�
�

� � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � � � � �

u v

x1 S1 y1

x3

S3

y3

x2

S2

y2

x3:=u

S3

v=:y3• •
x1 S1 y1

x2:=u

S2

v=:y2• •
x1 S1 y1

Fig. 7. Gluing H in S1 via u, v
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Given slices S = (N, A, x, y) and S′ = (N ′, A′, x′, y′), by a draft homomor-
phism from S′ to S we mean a function θ : N ′ → N , denoted by θ : S′ ��� S,
that preserves arcs. Now, given slices S and S′ as before, a draft homomorphism
θ : S′ ��� S, and graph H , we set glue θ(H, S) = glue (θx′,θy′)(H, S). Rule HypΓ

(Table 4) allows us to glue a graph H onto a slice S of a graph under a draft
homomorphism θ : S′ ��� S when G′ ∪ {S′} � H is a hypothesis in Γ or is an
axiom.

Table 4. Hypothesis rule

HypΓ

G ∪ {S}
G ∪ glue θ(H,S)

if θ : S′���S and G′ ∪ {S′} � H is in Γ or is an axiom

The next result, showing that gluing preserves meaning, i.e. that rule HypΓ

is sound, follows from the fact that draft homomorphisms transfer assignments
by composition.

Lemma 3. For all slices S and S′ and draft homomorphism θ : S′ ��� S, if
M |= {S′} � H, then M |= {S} � glue θ(H, S), for every model M.

The Box rule (Table 5) is a two-way rule, i.e. it can be applied in the top-down
and in the bottom-up directions. In the top-down direction, the Box rule allows
us to replace an arc labeled by a box H having a graph H = {Si : i ∈ I} inside
of it, by a set {u Si v : i ∈ I} of parallel arcs, each one labeled by a box with the
unary slice graph Si inside of it, and vice-versa, for the bottom-up direction. In
the case I = ∅, the Box rule allows us to erase (top-down) or to add (bottom-up)
an arc labeled by a box with the empty graph O inside of it. Our calculus is
heavily based on slice homomorphism, but a graph is a finite set of slices. Thus
the De Morgan’s laws expressed by our Box rule, in the top-down direction,
allows one to obtain graphs where boxes have singleton graphs, preparing the
application of the Cover rule.

Soundness of the Box rule follows immediately from the definitions of meaning
of box label and meaning of graphs.

Table 5. Box rule

Box
G ∪ {(N, A ∪ {u {Si : i ∈ I} v}, x, y)}
G ∪ {(N, A ∪ {u Si v : i ∈ I}, x, y)}
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Lemma 4. For every model M, it follows that

[[(N, A ∪ {u {Si : i ∈ I} v}, x, y)]]M = [[{(N, A ∪ {u Si v : i ∈ I}, x, y)}]]M.

The notion of derivation is standard as in the rewriting systems for equational
proofs. A proof of a graph inclusion G � H from a set of hypotheses is obtained
starting with G and applying our derivation rules and the hypotheses for rewrit-
ing G until we obtain H . Given a set of graph inclusions Γ , by a derivation
from Γ , or simply a Γ -derivation, we mean a sequence (G0, . . . , Gn) of graphs
such that each graph Gi, for i ∈ {1, . . . , n}, is obtained from graph Gi−1 by an
application of one of the rules Cv, HypΓ , or Box. A graph H is derivable from a
graph G using Γ , or simply H is Γ -derivable from G, denoted by Γ � G � H ,
when there is a Γ -derivation (G0, . . . , Gn) such that G0 = G and Gn = H . An
inclusion G � H is a theorem, denoted by � G � H , when H is derivable from
G using the empty set of hypotheses.

The Box rule gives us a normal form for graphs.

Lemma 5. For all graph G, there is a graph NFG such that � G � NFG,
� NFG � G, and every box label occurring in NFG encloses a singleton graph.

4 Completeness of the Graph Calculus with Complement

Soundness of our graph calculus follows from Lemmas 1, 2, 3, and 4. We will
give the general idea of the completeness proof . We may assume that every box
label have a unary graph inside, based on Lemma 5.

Given a set of graph inclusions Γ and a graph inclusion G � H , follow the
procedure.

Step 0. G0 := G.
Step i + 1. Either Gi ← H , then stop, or else there is a slice S ∈ Gi

such that {S} ← H . Write Gi = G′ ∪{S}. Take Gi := G′ ∪glue S(θ, H ′),
where θ : S′ ��� S and G′ ∪ {S′} � H ′ ∈ Γ or is an axiom.

If the procedure ever stops, the sequence (G0, . . . , Gn) is a Γ -derivation of G �
H . Otherwise, we have a directed chain of slices (Sn)n∈N such that, for all i ∈ N,
{Si} is not covered by H , and there is a slice homomorphism from Si to Si+1.
In fact, for each i ∈ N, there is a slice Si ∈ Gi with {S} ← H and a slice
Si+1 ∈ Gi+1 with {Si+1} ← H , for Gi = G′∪{Si}, Gi+1 = G′∪glue Si(θ, H ′) and
Si+1 ∈ glue Si(θ, H

′). Since Si+1 ∈ glue Si(θ, H
′), there is a slice homomorphism

φ : Si → Si+1.
The canonical model Mc = 〈Ñ∗, {rMc

: r ∈ Rsym}〉 is obtained by a direct limit
on slice chain (Sn)n∈N. More explicitly, form the set N∗ of all nodes occurring in
the slices of the chain, and define the (equivalence) relation ∼ on it as follows:
given nodes u ∈ Si and v ∈ Sj , set u ∼ v iff, for some k ≥ i, j, φi

ku = φj
kv. Take

Ñ∗, the quotient set of N∗ by ∼, with the natural quotient map ν : N∗ → Ñ∗.
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Now, interpret each relation symbol naturally by setting (ũ, ṽ) ∈ rMc

iff there
exist n ∈ N, u′ ∼ u, v′ ∼ v, and an arc u′rv′ ∈ ASn .

We then have the Satisfiability Lemma, whose proof will be omitted, by the
lack of space.

Lemma 6 (Satisfiability). Consider the canonical model Mc for the graph
inclusion G � H with set of hypotheses Γ . Hence, (1) Mc |= Γ and (2) Mc |=
G � H.

We thus have completeness of our graph calculus.

Theorem 1 (Completeness). If Γ |= G � H, then Γ � G � H.

Proof. Suppose Γ |= G � H . Hence, there is no (counter-)model M such that
M |= Γ and M |= G � H . Hence, the procedure stops. Hence, Γ � G � H .

From the considerations above, we have that whenever Γ |= G � H , there
is a derivation in a normal form, i.e. a derivation consisting of a sequence of
applications of Box followed by a sequence of applications of HypΓ followed by
a single application of Cv followed by a sequence of applications of Box.

Corollary 1 (Normal form of derivations). Given a set Γ ∪ {G � H} of
graph inclusions, if Γ |= G � H, then there are graphs G1, G2, G3 with all box

label having a unary graph inside such that G
Box∗==⇒ G1

Hyp∗
Γ==⇒ G2 ← G3

Box∗==⇒ H.

Our calculus can be adapted to be used with graphs whose labels are more com-
plex, i.e. we can assume our labels are terms generated from relational symbols
by application of relational algebraic operators as the Boolean, Peircean and oth-
ers. For instance, the operations complement, union, intersection, composition,
and reversion, whose meaning are the expected ones, as well as constant terms
interpreted in a model whose universe is M as M ×M , the identity and the
empty relations. For this, one has to provide meaning preserving transformation
rules to simplify the labels of the slice to boxes (with slices inside) and atomic
relations.
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